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Abstract-A new numerical scheme for one-dimensional heat flow problems with phase change is presented. 
The technique, which continuously monitors the progression of the phase interface, is unusual for the high 

accuracy achieved without sacrifice to computing efficiency. 

NOMENCLATURE terface. Because of certain numerical difficulties, these 

heat capacity per unit volume; methods have not found favour in the past. The 

thermal conductance coefficient, Fig. I ; method now presented circumvents such difficulties 

Gaussian elimination coefficients, equations and yields accurate solutions at low cost for these and 

Pa), Pa); other similar moving interface problems. 

position of moving phase change interface; 
heat capacity coefficient, Fig. 1; 
thermal conductivity; 
latent heat per unit volume; 
Gaussian elimination coefficients, equations 

Ub), (9b); 
temperature; 
time ; 
depth. 

EXISTING METHODS 

One-dimensional freezing or thawing with latent 

heat release (+ ) or absorption ( - ) at a fixed tempera- 
ture is described by the conditions 

and 

kc 
* ax ,z 

-kz 
"ax L 

= (&)L$ (1) 

Greek symbols 

At, time step; 

AX, space interval ; 
AT, temperature range; 

0, unfrozen moisture (volume basis). 

Subscripts 

i? 
apparent ; 
frozen or freezing ; 

4 node index ; 
m, time step index ; 
N, node index for fixed boundary ; 
P? node index for element undergoing 

phase change; 

u, thawed or unfrozen. 

with 

and 

FOR DESIGNING roadways and other engineering 
works in cold climates, as well as for more funda- 
mental studies of ground temperature regimes in 
nature, it is useful and often essential to have avail- 
able numerical techniques for calculating the depth of 
frost or thaw penetration. For long-term com- 
putations involving many annual cycles, high numeri- 
cal efficiency is required in order to minimize costs. 
Road embankment calculations are usually concerned 
with layered systems composed of materials that 
possess a narrow freezing range. The most appropriate 
techniques for such cases are those that locate directly 
the position of the moving freezing or thawing in- 

C, = C, for T > T, W) 

where 

C, = C, + L,at?ja T for T < q (4b) 

0 = 0( T, x) = unfrozen volumetric moisture content. 

In practice, the entire latent heat is usually associated 
with a small finite temperature range AT and equation 

T(z, t) = T, = constant (2) 

at the moving interface. The heat conduction equation 

applies in the frozen and unfrozen regions on either 
side of the moving phase boundary, due account being 

taken of differences in thermal properties. 
Numerical treatments of phase change generally 

replace the moving boundary condition [equation (l)] 
by a latent heat source term added to the heat 
conduction equation to yield an apparent heat 
capacity formulation 



616 L. E. GOODRICH 

(4b) is replaced by 

C,, = Cf$L,./AT‘ for T(-AT < T < q- 

C,, = C,,- for T < T,-AT. 

Although apparent heat capacity formulations have 
the advantage of being simple to programme, the 
predicted phase change interface location, correspond- 
ing to the isotherm T = T,., advances in an unphysical 
oscillatory fashion and this is accompanied by distor- 
tion of the temperature profile in the region undergo- 
ing phase change. In order to hold errors within 
acceptable bounds the grid spacing in that region may 
have to be reduced substantially. This can, however, 
result in a situation in which the T,-isotherm moves 
across a grid element in less than one time step and the 
element latent heat contribution can be missedentirely 
unless the time step also is reduced. Spatial resolution 
of the phase change interface iocation is poor, and this 
can be critical when dealing with layered problems 
with sharp contrast in thermal properties between 
neighbouring layers such as insulated road em- 
bankments. Inability to accommodate two phase 
change planes existing simult~~neous~y within the same 
grid element can lead to errors in certain periodic 
thermal regime problems where coalescence is impor- 
tant. As well, in time-dependent boundary condition 
problems the error associated with oscillation can be 
cumulative. These difficulties are exacerbated when 
dealing with materials that possess a narrow freezing 

range or freeze at fixed temperature. Several different 
apparent heat capacity formulations have already 
been described [I-h]. 

Only a limited number of formulations have been 
given that incorporate equation (I ). Douglas and 
Gallie [7) and Kazemi and Perkins [S] describe 
methods that use variable time steps whose length 
must be found by nodal iteration, though the for- 
mulation uses explicit time differencing. A time de- 
pendent grid spacing scheme, also requiring nodal 
iteration, has been proposed by Heitz and Westwater 
[9] and Murray and Landis [lo]. Both methods are 
restricted to homogeneous media and are not suited to 
practical calculations. 

It is also possible, and certainly preferable, to solve 

the system defined by equations (l)-(3) for the local 
position of the phase change plane within an element 
of fixed dimensions using fixed time steps. Crank [l I] 
and Ehrlich [12] used higher order space differences 
for the phase change interface equation and this 
restricts the method to homogeneous media, at the 
same time necessitating intricate programming in 
order to move the interface across element boundaries. 
The formulation of Meyer rt LII. [ 133 is a lumped- 
parameter scheme using finite differences for the time 
dimension only. it is flexible, but a considerable 
amount of computation is required at each time step. 
Hwang [ 141 presented a scheme in which an equiva- 
lent of equation (I) can be used to estimate an 
elemental latent heat source term for inclusion in a 
tw-o-dimensional finite-element formulation. The la- 
tent heat is considered to be distributed over the 

element in a manner similar to that of apparent heat 
capacity formulations, and the phase change interface 
location is not followed continuously as such. The 
initial ~~-isotherm position is, instead, estimated at 
each time step by linear interpolatiotl of the cor- 
responding temperature profile. In addition. the non- 
linearity associated with the phase change equation 
and hence the necessity of using nodal iteration for 

solution is eliminated by using a forward difference 
approximation for the latent heat contribution. Al- 
though these approximatjons can be justj~ed on 
practicai grounds for two-dimensional problems, the 
resulting numerical accuracy is not so high as could 
otherwise be achieved. 

Many of the drawbacks associated with these me- 
thods can be circumvented, and it is the purpose ofthis 
paper to describe a technique capable of locating the 
phase change inter&e in one-dimensional layered 
systems accurately and efficiently. The method uses a 
centred-difference formulation with solution by simple 
Gaussian elimination at ordinary nodes. The element 
undergoing phase change is treated by a technique that 
continuously foilows the position of the moving phase 
change interface by means of a forlnulation that 

maintains the non-linear character of the problem 
without requiring costly nodal iterations for solution. 

PROPOSED NUMERICAL TECHNIQUE FOR 
PHASE CHANGE AT FIXED TEMPERATURE 

The centred time difference equation for layered 
systems can be written 

wCi.(7;m+l-7;“1) 

=CNi~,.(7;“:‘-7;“+‘+7;m_t-7;m) 

+clvi.(7;“,;‘-7;“+1+7;m,,-7;m) (5) 

where i and m are space and time indices, respectively. 
The heat capacity coefficients HC and conductance 
coeficients CN are defined in Fig. 1. Rearranging, the 
equation may be cast in the form 

-CN,_;~“:‘~(tfCi+CN,_,CCitii) 

.7;“+‘-CN,.I;“,;’ = RHSi (6) 

where 

RHS; = CN,_, . T:. , 

With boundary tem~ratures prescribed at nodes i 
= 0 and i = N corresponding to the upper and lower 
surfaces, respectively, the unknown temperatures 
Tmf ‘, 1 < i < N - I can be found by solving the 
s&tern of equations represented by equation (6) using 
Gaussian elimination. Two equivalent formulations 
are possible. Upper trian~ulatiot~ (forward elim- 
ination) yields 

E, = F” (prescribed) 

s, = 0 

Ei = (RNS,+CNi_,~Ei_,),OI 

SC = fN,iD 

(7a k 

t-W 
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The barred areas indicate elemental volumes 
throughout which the thermal properties are 
assumed uniform 
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Foci. I. Definition of finite difference grid used for in- 
homogeneous materials. 

where 

D = HC,+CN,_,+CN,-CN,_,.Si_, 

an d 

i=l to N-l. 

After successive evaluation of the coefficients Ei, Si, the 
nodal temperatures may be determined from the 
backward substitution equation 

T:“+’ = Si.T’“+;l+Ei (8) 

where 

i=N-I to 1 

and 

T,“+ ’ is prescribed. 

For lower triangulation (backward elimination) 

E’ N = Tm’l (prescribed) h 

Sk. = 0 

E; = (RHS,+CNi.Ei+,)/D Pa) 

S; = CN,_ ,/D (9b) 

where 

D’= HC,+CN,_,+CN,-CNi.Si+, 

and 

i=N-I to 1. 

The unknown nodal temperatures are successively 
determined from the forward substitution equation 

Tm+i = S!. T”J+‘+E! ,,I L (10) 

where 

i=l to N-l 

and 

T”+ ’ is prescribed. 0 

If a moving phase boundary is present within an 
elemental volume bounded by nodes p and p+ 1, the 
element can be split into two zones as shown in Fig. 2. 
Zones (I and b have thermal properties C,, k, and 

-- p-1 

AX p-1 CNp-1, Cpm1 

- 
k Ca 

[ P 

a’ G 
AX 

P 7-x & -q-Ig 
___-__---__+-_T Tt 

H = nx -G 
I ‘1.. ,I. /,,,,’ ” ‘,“,‘,,I P 

I D+l 
AX C 
, lP+l 

CNp+l, pi1 

CNi kilAxi 

k a. kb. Ca. Cb ARE THERI\IAL CONDUCTIVITIES 
AND VOLUMETRIC HEAT CAPACITIES 
FOR REGIONS OF THE EtChlENT 
ABOVE AND BELO\Y THE PHASE 
CHANGE INTERFACE. 

FIG. 2. Definition of finite difference grid used for phase 
boundary treatment. 

C,,, k,, respectively. Using central differences and 
assuming Tf = 0 for convenience, heat balance for 

node i = p yields 

t(C,_,.Ax,_,+C;G).(Td”+‘-Td”)lAt 

=~CN,_,.(Tdn_+l’-Td”+‘+Td”_,-Tdn) 

-f;.(T,m+i+T;) (II) 

where G = f(G”+‘+G”), and Gm(Gm+‘) is the dis- 

tance below s, of the TJ-isotherm at the beginning 

(end) of the time step. At node p+ 1, 

$(C,+i.Ax,+, +Ch.H).(Tp”+‘-Tdni,)!At 

=+ZN,+,~(Td”,+,‘-Tpm++,‘+Tpm+2-Td”,,) 

-+(T;+i’+ Td”,:‘) (12) 

where 

A = AX,--G 

The moving boundary condition, equation (1 ), is 
approximated by the central difference equation 

_+ L,(G” + ’ - Gm)/Af 

The second term on the left of equation (13) is 
included to account for enthalpy change associated 
with the elemental specific heat capacities. It arises 
because the equation represents a heat balance for a 
region of finite dimensions. Although not essential, this 
additional term does improve accuracy, particularly 
when the latent heat is small compared with the 



618 L. E. GOODRICH 

specific heat capacity terms. Heat transfer at the over a time step, then whenever equation (13) yields 
remaining ordinary nodes is described by equation 
(5). As G m+l is not known explicitly, the system G”‘*’ = G’> A.x,, 

including equations (5) and (1 l)-(13) is non-linear. 
Introduction of nodal iteration can, however, be A’1 can be approximated by 
avoided by judicious use of both forward and back- 
ward Gaussian elimination. At 

I 
= (Asp-G”) 

From the forward elimination formula, equation (7), 
G’_G” At’ (18) 

the coefficients Ei, Si can be determined successively for Nodal temperatures are updated using the partial time 
i=l toi=~-l.Fornode~=~,equation(ll)leads step At,, after which displacement of the phase change 
to 

E, = (14) 

and from equation (8) 

or, since 

Td”” = S; Ts’ E, 

T/ = 0 

T”” -_E 
P P’ (15) 

Similarly, the backward elimination technique, equation (9) and (lo), for the region below the phase plane 
gives 

I-“+‘-E p+, - P+i (16) 

where, following equation (12) 

CN,+ I .(T~zfE;,+Jf Cp+I 
i 

k 

&+I = 

.r!5&G+cb.g_CN,,,-$ 
> T; I 

- 

c 
A.s .---liil+C,.~+~+CM,+,(l-S;+*) 

(17) 

P+’ At 

and the coefficients Ei, Si are calculated successively 
from equation (9) with i = N - 1 to i = p + 2. 

It should be noted that in both equations (14) and 
(17) all terms on the RHS are known explicitly except 
G”” ‘. The introduction of forward elimination above, 
and backward elimination below, the moving boun- 
dary has the effect of isolating the non-linearity 
associated with the moving interface. Equation (13) 
combined with equations (15) and (16) is a non-linear, 
ordinary difference equation whose solution yields 
Cm+’ and the nodal temperatures Tp’” and Td”,+,’ 
simultaneously. The remaining nodal temperatures 
can be determined from the appropriate backward or 
forward substitution equation, without recourse to 
nodal iteration. Equations (13) (15) and (16) can be 
solved by any convenient method. The Secant method 
is appropriate and converges after four or five iter- 
ations at most. Simple iteration is also satisfactory. 

To complete the numerical formulation it is nec- 
essary to provide a means of permitting the phase 
change interface to move across an element boundary. 
This may be accomplished by splitting the time step. 

At = At, +At, 

where 

At, = time interval required to move the T,-isotherm 
to the element boundary. Assuming velocity constant 

plane within the neighbouring element i = pf 1 is 
evaluated for the remaining interval At2; the nodal 
temperatures are then updated to their final values 
qrn’ ‘. An analogous procedure is used whenever G’ 
< 0. 

VERIFICATION OF THE METHOD 

Figure 3 compares an analytical and two numerical 
solutions for a simplified Neumann freezing problem. 
Comparison is based on frost penetration and it may 
be noted that this offers a more sensitive test of the 
quality of the method than does the more usual 
comparison of temperature profiles. The following 
parameter values were chosen : 

T(X,O) = 7;,ilj,l = + 2°C 

T(0, t) = Turface = - 10°C t > 0 

T(~, t) = ~~itial t ~ 0 

k,=k,=2W/m.K 

L, = 100 M.I/m3. 

Thermal conductivities and heat capacities were as- 
sumed to be identical in the frozen and thawed regions 
to ensure that differences in results obtained by the 
numerical methods were due only to the assumptions 
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NEUMANN SOLUTION (al 

PROPOSED NUMERICAL METHOD Ibl 

APPARENT HEAT CAPACITY METHOD (c) 

0. 25 

0 I I I I 

10.0 20.0 30.0 40.0 

TIME, d 
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0 

FIG. 3. Comparison of two numerical methods vs analytic solution for frost penetration 

made in the treatment of latent heat. Curve (a) shows 
the frost penetration calculated from the analytical 
solution ; curve (b) was computed using the numerical 
method presented here. For comparison, curve (c)was 
calculated using an apparent heat capacity for- 
mulation assuming a freezing range of 0.5 K. A 
Crank-Nicholson formula was used with thermal 

properties updated at each time step. In both cases 
precautions were taken to eliminate the starting error 
associated with the step-function surface condition. 
Results for the author’s method were calculated using 
a grid spacing and time step 

Ax = 0.25 m 

At = 1 day 

while the apparent heat capacity formulation required 

Ax = 0.125m 

At = 0.25 day. 

This represents nearly an eight-fold increase in com- 
putation time. 

It may be seen that the present method follows very 
closely the true frost penetration at all times, with no 
tendency to oscillate. Accuracy is such that results are 
essentially indistinguishable from those of the analytic 
solution. The relative crudeness of the apparent heat 
capacity method is evident. 

A second comparison is presented in Fig. 4, in which 
the problem is similar to that of Fig. 3 except for the 
thermal properties, which were taken as 

k, = 2.25 W/m.K 

C, = 1.5 MJ/m3 

k, = 1.75 W/m.K 

C, = 2.5 MJ/m3. 

Degeneration of the numerical results is minimal. 

Although not shown, the relative performance of the 
apparent heat capacity formulation would have been 
even worse in this case than in the previous one 
inasmuch as the solution oscillations are no longer 
compensated symmetrically. 

DISCUSSION 

The proposed method offers a number of advan- 

tages when compared with existing techniques. The 
rather exceptional accuracy inherent in the for- 
mulation is obtained with no loss of efficiency and, in 
fact, computation times are essentially the same as 
those required for the central difference calculation at 
the ordinary nodes. The method is completely flexible, 
and layered systems with sharp contrasts in thermal 
properties, either between layer boundaries or as- 
sociated with change of phase, can be handled ef- 
ficiently without degradation of solution accuracy. 
Because the solution accurately tracks the true frost 
penetration at all times, high accuracy can be main- 
tained even in problems with rapidly changing surface 
boundary conditions. The latent heat formulation 
does not in itself impose restrictions on the size of grid 
spacing or time step. These are limited only by the 
usual truncation error associated with the 
Crank-Nicholson equations for the ordinary nodes. 

The latent heat treatment, as described, is restricted 
to problems with a single freezing or thawing front. 
Situations involving more than one phase interface can 
occur,’ for example, in the study of annual ground 
thermal regimes. The combined backward and for- 
ward Gaussian elimination solution technique cannot 
be used to avoid nodal iteration if two phase planes are 
present. In many practical cases, however, tempera- 
tures in the zone between the two phase interfaces 
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Frc;. 4. Calculated frost depth comparison--non-constant thermal properties. 

rapidly approach the freezing point. Under these 
conditions heat flow is small compared with values 
outside the zone and can be ignored. A single-sided 
formulation of the method can then be used for each 
phase change plane separately, and in this way nodal 
iteration can be avoided. In addition, coalescence of 
the phase change planes can be followed even when 
both interfaces occur within the same element. This 
approach was used in a programme developed to 
study the effects of snow cover on ground thermal 
regimes. Complete FORTRAN pro~rammes based on 
earlier versions of the formulation have been given 
[15-171. If nodal iteration cannot be tolerated for 
problems with multiple phase interfaces, where the 
isothermal assumption cannot be made or where 
thermal properties are very strong functions of tem- 
perature, it may be desirable to ref(~rmulate the 
method using a three time level scheme. This approach 

is to be considered in a future study. 

CONCLUSION 

A new nL~rneri~l technique for treating one- 
dimensional problems with phase change has been 
developed. The numerical accuracy of the method is 

much superior to that of the apparent heat capacity 

formulation. The solution technique retains the non- 
linearity associated with the moving phase boundary 
without requiring costly nodal iteration. The resulting 
high efficiency is further enhanced by the insensitivity 
of the method to size of grid spacing and time step. 

Comparison with the analytical solution for a 
simplified problem showed that the numerical method 
yields results closely following those for analytically 
calculated frost penetration. In contrast with the 
apparent heat capacity formulation, the solution 

showed no tendency to oscillate and the high accu- 
racy achieved was maintained at all times. Compari- 
son with the analytic solution for a freezing problem 
with phase dependent thermal properties showed no 
significant deterioration of accuracy. Similar perform- 
ance can be expected with layered systems or problems 
with rapidly changing boundary conditions. 
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TECHNIQUE NUMERIQUE PERFORMANTE POUR DES PROBLEMES 
THERMIQUES MONO~I~ENSIONNELS AVEC CHANG~MENT DE PHASE 

RbumC-On presente une nouvelle procedure numirique pour traiter les problemes thermiques mono- 
dimensionnels avec changement de phase. La technique qui suit continliment la progression de l’interface 
de changement de phase est remarquable par sa grande precision obtenue sans sacrifier a la performance 

de calcul. 

WIRKSAMES NUMERISCHES VERFAHREN FUR EINDIMENSIONALE 
WARMEUBERTRAGUNGSPROBLEME MIT PHASENWECHSEL 

Zusammenfassung-Es wird ein neues numerisches Verfahren fur eindimensionale Warmeiibertragungsprobleme 
mit Fhascn~nderung vorgestellt. Bei diesem Verfahren wird der Ort der Phasengrenz~~che bei jedem 
Zeitschritt explizit bestimmt. Der Aufsatz enthalt aul3erdem ein L~sungsverfahren fiir das Gleichungssystem, 
das Iterationen in jedem Gitterpunkt vermeidet. Daraus resultiert ein Rechenverfahren, das zugleich numerisch 

wirkungsvoli und ungewiihnlich genau ist. 

3~~EKT~BHbI~ ~~C~EHHbI~ MET04 PE~EH~~ O~HOMEPHbIX TE~~OBbIX 
3AAAY IIPM QtA30BbIX ~PEBPA~EH~~X 

hHOTBUHR - B pa6ore IIpenCTaBJIeH HOBblii ‘IHCneHHbIR MeTOiI peIJ.IeHHB OBHOMepHbIX 3aaaY 
Tennoo6bfeHa nps @a30BbIx npeBpaureHHflx, nO3BOJIBIOLIHIfi HenpepbIBHO 0npenenflTb nono)KeHHe 
IIepeMeIHaIOIHetiCR I-paHHUb1 pa3nena @as. AaHHbIH MeTOn 06nanaeT BbICOKOfi TO’IHOCTbIO A 

BbICOKOir 3+$eKTABHOCTbIo npH paC’@TaX. 


